May 29, 2025 Last updated: May 29, 2025
If you want to calculate the time evolution of Eq. (1), one of the most common and simple methods is the Runge-Kutta method (RK4).
d x d t = f ( x , t ) \begin{equation}
% \label{eq:differential}
\frac{dx}{dt} = f(x, t)
\end{equation} d t d x = f ( x , t )
Using the Runge-Kutta method, you can update the state x x x at time t t t to the next state at time t + h t+h t + h as shown below.
k 1 = f ( x , t ) k 2 = f ( x + h 2 k 1 , t + h 2 ) k 3 = f ( x + h 2 k 2 , t + h 2 ) k 4 = f ( x + h k 3 , t + h ) \begin{align}
% \label{eq:runge_kutta}
&k_1 = f(x, t) \\
&k_2 = f(x + \frac{h}{2} k_1,~ t + \frac{h}{2}) \\
&k_3 = f(x + \frac{h}{2} k_2,~ t + \frac{h}{2}) \\
&k_4 = f(x + h k_3,~ t + h) \\
\end{align} k 1 = f ( x , t ) k 2 = f ( x + 2 h k 1 , t + 2 h ) k 3 = f ( x + 2 h k 2 , t + 2 h ) k 4 = f ( x + h k 3 , t + h )
Δ x = h 6 ( k 1 + 2 k 2 + 2 k 3 + k 4 ) \begin{equation}
\Delta x = \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4)
\end{equation} Δ x = 6 h ( k 1 + 2 k 2 + 2 k 3 + k 4 )
The major advantage of the Runge-Kutta method is that it provides a fourth-order approximation while keeping the update formula very simple.
If you just want to achieve fourth-order accuracy, there are various possibilities to create such schemes.
Therefore, the key point of the Runge-Kutta method is its simplicity in procedure.
In this article, we assume that the notation in Eq. (2) is given, and will confirm that it indeed achieves fourth-order accuracy.
Meaning of Fourth-Order Accuracy
First of all, what does fourth-order accuracy mean?
When approximating x x x around a point ( x 0 , t 0 ) (x_0, t_0) ( x 0 , t 0 ) using Eq. (3), it means that Eq. (3) match the Taylor expansion up to the fourth order.
However, Eq. (3) does not match the Taylor expansion in its original form.
If we evaluate the derivative of Eq. (3) with respect to h h h , we find that the coefficients up to the fourth order match.
x ~ = x 0 + h 6 ( k 1 + 2 k 2 + 2 k 3 + k 4 ) \begin{equation}
% \label{eq:x0}
\tilde{x} = x_0 + \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4)
\end{equation} x ~ = x 0 + 6 h ( k 1 + 2 k 2 + 2 k 3 + k 4 )
x = x 0 + d x d t h + 1 2 d 2 x d t 2 h 2 + 1 6 d 3 x d t 3 h 3 + 1 24 d 4 x d t 4 h 4 + O ( h 5 ) \begin{equation}
% \label{eq:taylor}
x = x_0 + \frac{dx}{dt} h + \frac{1}{2} \frac{d^2x}{dt^2} h^2 + \frac{1}{6} \frac{d^3x}{dt^3} h^3 + \frac{1}{24} \frac{d^4x}{dt^4} h^4 + O(h^5)
\end{equation} x = x 0 + d t d x h + 2 1 d t 2 d 2 x h 2 + 6 1 d t 3 d 3 x h 3 + 24 1 d t 4 d 4 x h 4 + O ( h 5 )
Let’s take a look at the derivative of x ~ \tilde{x} x ~ with respect to h h h .
d x ~ d h = 1 6 ( k 1 + 2 k 2 + 2 k 3 + k 4 ) + h 6 [ d k 1 d h + 2 d k 2 d h + 2 d k 3 d h + d k 4 d h ] d 2 x ~ d h 2 = 1 3 [ d k 1 d h + 2 d k 2 d h + 2 d k 3 d h + d k 4 d h ] + h 6 [ d 2 k 1 d h 2 + 2 d 2 k 2 d h 2 + 2 d 2 k 3 d h 2 + d 2 k 4 d h 2 ] d 3 x ~ d h 3 = 1 2 [ d 2 k 1 d h 2 + 2 d 2 k 2 d h 2 + 2 d 2 k 3 d h 2 + d 2 k 4 d h 2 ] + h 6 [ d 3 k 1 d h 3 + 2 d 3 k 2 d h 3 + 2 d 3 k 3 d h 3 + d 3 k 4 d h 3 ] d 4 x ~ d h 4 = 2 3 [ d 3 k 1 d h 3 + 2 d 3 k 2 d h 3 + 2 d 3 k 3 d h 3 + d 3 k 4 d h 3 ] + h 6 [ d 4 k 1 d h 4 + 2 d 4 k 2 d h 4 + 2 d 4 k 3 d h 4 + d 4 k 4 d h 4 ] \begin{align}
\frac{d\tilde{x}}{dh} &= \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)
+ \frac{h}{6} \left[ \frac{dk_1}{dh} + 2\frac{dk_2}{dh} + 2\frac{dk_3}{dh} + \frac{dk_4}{dh}\right] \\
\frac{d^2\tilde{x}}{dh^2} &= \frac{1}{3} \left[ \frac{dk_1}{dh} + 2\frac{dk_2}{dh} + 2\frac{dk_3}{dh} + \frac{dk_4}{dh}\right]
+ \frac{h}{6} \left[ \frac{d^2k_1}{dh^2} + 2\frac{d^2k_2}{dh^2} + 2\frac{d^2k_3}{dh^2} + \frac{d^2k_4}{dh^2}\right] \\
\frac{d^3\tilde{x}}{dh^3} &= \frac{1}{2} \left[ \frac{d^2k_1}{dh^2} + 2\frac{d^2k_2}{dh^2} + 2\frac{d^2k_3}{dh^2} + \frac{d^2k_4}{dh^2}\right]
+ \frac{h}{6} \left[ \frac{d^3k_1}{dh^3} + 2\frac{d^3k_2}{dh^3} + 2\frac{d^3k_3}{dh^3} + \frac{d^3k_4}{dh^3}\right] \\
\frac{d^4\tilde{x}}{dh^4} &= \frac{2}{3} \left[ \frac{d^3k_1}{dh^3} + 2\frac{d^3k_2}{dh^3} + 2\frac{d^3k_3}{dh^3} + \frac{d^3k_4}{dh^3}\right]
+ \frac{h}{6} \left[ \frac{d^4k_1}{dh^4} + 2\frac{d^4k_2}{dh^4} + 2\frac{d^4k_3}{dh^4} + \frac{d^4k_4}{dh^4}\right]
\end{align} d h d x ~ d h 2 d 2 x ~ d h 3 d 3 x ~ d h 4 d 4 x ~ = 6 1 ( k 1 + 2 k 2 + 2 k 3 + k 4 ) + 6 h [ d h d k 1 + 2 d h d k 2 + 2 d h d k 3 + d h d k 4 ] = 3 1 [ d h d k 1 + 2 d h d k 2 + 2 d h d k 3 + d h d k 4 ] + 6 h [ d h 2 d 2 k 1 + 2 d h 2 d 2 k 2 + 2 d h 2 d 2 k 3 + d h 2 d 2 k 4 ] = 2 1 [ d h 2 d 2 k 1 + 2 d h 2 d 2 k 2 + 2 d h 2 d 2 k 3 + d h 2 d 2 k 4 ] + 6 h [ d h 3 d 3 k 1 + 2 d h 3 d 3 k 2 + 2 d h 3 d 3 k 3 + d h 3 d 3 k 4 ] = 3 2 [ d h 3 d 3 k 1 + 2 d h 3 d 3 k 2 + 2 d h 3 d 3 k 3 + d h 3 d 3 k 4 ] + 6 h [ d h 4 d 4 k 1 + 2 d h 4 d 4 k 2 + 2 d h 4 d 4 k 3 + d h 4 d 4 k 4 ]
Since we are only interested in the derivatives at h = 0 h=0 h = 0 , we can ignore the terms with h h h in each formula.
If we prove that these derivatives match d x d t \frac{dx}{dt} d t d x , d 2 x d t 2 \frac{d^2x}{dt^2} d t 2 d 2 x , d 3 x d t 3 \frac{d^3x}{dt^3} d t 3 d 3 x , and d 4 x d t 4 \frac{d^4x}{dt^4} d t 4 d 4 x , then we can confirm that the Runge-Kutta method has fourth-order accuracy (in other words, the error of one step is O ( h 5 ) O(h^5) O ( h 5 ) ).
Proving Fourth-Order Accuracy
Now, let us confirm that the Runge-Kutta method indeed achieves fourth-order accuracy.
First, we will derive the derivatives of x x x based on the original differential equation Eq. (1).
d x d t = f \begin{equation}
\frac{dx}{dt} = f
\end{equation} d t d x = f
d 2 x d t 2 = ∂ f ∂ t + ∂ f ∂ x d x d t = ∂ f ∂ t + ∂ f ∂ x f \begin{equation}
\frac{d^2x}{dt^2} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x} \frac{dx}{dt} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x} f
\end{equation} d t 2 d 2 x = ∂ t ∂ f + ∂ x ∂ f d t d x = ∂ t ∂ f + ∂ x ∂ f f
d 3 x d t 3 = ∂ ∂ t ( ∂ f ∂ t + ∂ f ∂ x f ) + ∂ ∂ x ( ∂ f ∂ t + ∂ f ∂ x f ) f = ∂ 2 f ∂ t 2 + ∂ 2 f ∂ t ∂ x f + ∂ f ∂ x ∂ f ∂ t + ∂ 2 f ∂ x ∂ t f + ∂ 2 f ∂ x 2 f 2 + ( ∂ f ∂ x ) 2 f = ∂ 2 f ∂ t 2 + 2 ∂ 2 f ∂ t ∂ x f + ∂ f ∂ x ∂ f ∂ t + ∂ 2 f ∂ x 2 f 2 + ( ∂ f ∂ x ) 2 f \begin{align}
\frac{d^3x}{dt^3} &= \frac{\partial}{\partial t} \left( \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x} f \right)+ \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x} f \right) f \notag \\
&= \frac{\partial^2 f}{\partial t^2} + \frac{\partial^2 f}{\partial t \partial x} f + \frac{\partial f}{\partial x} \frac{\partial f}{\partial t} + \frac{\partial^2 f}{\partial x \partial t} f + \frac{\partial^2 f}{\partial x^2} f^2 + \left( \frac{\partial f}{\partial x} \right)^2 f \notag \\
&= \frac{\partial^2 f}{\partial t^2} + 2\frac{\partial^2 f}{\partial t \partial x} f + \frac{\partial f}{\partial x} \frac{\partial f}{\partial t} + \frac{\partial^2 f}{\partial x^2} f^2 + \left( \frac{\partial f}{\partial x} \right)^2 f
\end{align} d t 3 d 3 x = ∂ t ∂ ( ∂ t ∂ f + ∂ x ∂ f f ) + ∂ x ∂ ( ∂ t ∂ f + ∂ x ∂ f f ) f = ∂ t 2 ∂ 2 f + ∂ t ∂ x ∂ 2 f f + ∂ x ∂ f ∂ t ∂ f + ∂ x ∂ t ∂ 2 f f + ∂ x 2 ∂ 2 f f 2 + ( ∂ x ∂ f ) 2 f = ∂ t 2 ∂ 2 f + 2 ∂ t ∂ x ∂ 2 f f + ∂ x ∂ f ∂ t ∂ f + ∂ x 2 ∂ 2 f f 2 + ( ∂ x ∂ f ) 2 f
d 4 x d t 4 = ∂ ∂ t ( d 3 x d t 3 ) + ∂ ∂ x ( d 3 x d t 3 ) f = ∂ 3 f ∂ t 3 + 2 ∂ 3 f ∂ t 2 ∂ x f + 2 ∂ 2 f ∂ t ∂ x ∂ f ∂ t + ∂ 2 f ∂ t ∂ x ∂ f ∂ t + ∂ f ∂ x ∂ 2 f ∂ t 2 + ∂ 3 f ∂ t ∂ x 2 f 2 + 2 ∂ 2 f ∂ x 2 ∂ f ∂ t f + 2 ∂ 2 f ∂ t ∂ x ∂ f ∂ x f + ( ∂ f ∂ x ) 2 ∂ f ∂ t + ∂ 3 f ∂ x ∂ t 2 f + 2 ∂ 3 f ∂ t ∂ x 2 f 2 + 2 ∂ 2 f ∂ t ∂ x ∂ f ∂ x f + ∂ 2 f ∂ x 2 ∂ f ∂ t f + ∂ f ∂ x ∂ 2 f ∂ x ∂ t f + ∂ 3 f ∂ x 3 f 3 + 2 ∂ 2 f ∂ x 2 ∂ f ∂ x f 2 + 2 ∂ 2 f ∂ x 2 ∂ f ∂ x f 2 + ( ∂ f ∂ x ) 3 f = ∂ 3 f ∂ t 3 + 3 ∂ 3 f ∂ t 2 ∂ x f + 3 ∂ 3 f ∂ t ∂ x 2 f 2 + ∂ 3 f ∂ x 3 f 3 + 3 ∂ 2 f ∂ t ∂ x ∂ f ∂ t + 5 ∂ 2 f ∂ t ∂ x ∂ f ∂ x f + 3 ∂ 2 f ∂ x 2 ∂ f ∂ t f + ∂ f ∂ x ∂ 2 f ∂ t 2 + 4 ∂ 2 f ∂ x 2 ∂ f ∂ x f 2 + ( ∂ f ∂ x ) 2 ∂ f ∂ t + ( ∂ f ∂ x ) 3 f \begin{align}
\frac{d^4x}{dt^4} &= \frac{\partial}{\partial t} \left( \frac{d^3x}{dt^3} \right)+ \frac{\partial}{\partial x} \left( \frac{d^3x}{dt^3} \right) f \notag \\
&= \frac{\partial^3 f}{\partial t^3} + 2 \frac{\partial^3 f}{\partial t^2 \partial x} f + 2 \frac{\partial^2 f}{\partial t \partial x} \frac{\partial f}{\partial t} + \frac{\partial^2 f}{\partial t \partial x} \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x} \frac{\partial^2 f}{\partial t^2} \notag \\
&~~~+ \frac{\partial^3 f}{\partial t \partial x^2} f^2 + 2 \frac{\partial^2 f}{\partial x^2} \frac{\partial f}{\partial t} f + 2 \frac{\partial^2 f}{\partial t \partial x} \frac{\partial f}{\partial x} f + \left( \frac{\partial f}{\partial x} \right)^2 \frac{\partial f}{\partial t} \notag \\
&~~~+ \frac{\partial^3 f}{\partial x \partial t^2} f + 2 \frac{\partial^3 f}{\partial t \partial x^2} f^2 + 2 \frac{\partial^2 f}{\partial t \partial x} \frac{\partial f}{\partial x} f + \frac{\partial^2 f}{\partial x^2} \frac{\partial f}{\partial t} f + \frac{\partial f}{\partial x} \frac{\partial^2 f}{\partial x \partial t} f \notag \\
&~~~+ \frac{\partial^3 f}{\partial x^3} f^3 + 2 \frac{\partial^2 f}{\partial x^2} \frac{\partial f}{\partial x} f^2 + 2 \frac{\partial^2 f}{\partial x^2} \frac{\partial f}{\partial x} f^2 + \left( \frac{\partial f}{\partial x} \right)^3 f \notag \\
&= \frac{\partial^3 f}{\partial t^3} + 3 \frac{\partial^3 f}{\partial t^2 \partial x} f + 3 \frac{\partial^3 f}{\partial t \partial x^2} f^2 + \frac{\partial^3 f}{\partial x^3} f^3 \notag \\
&~~~+ 3\frac{\partial^2 f}{\partial t \partial x} \frac{\partial f}{\partial t} + 5 \frac{\partial^2 f}{\partial t \partial x} \frac{\partial f}{\partial x}f + 3 \frac{\partial^2 f}{\partial x^2} \frac{\partial f}{\partial t} f + \frac{\partial f}{\partial x} \frac{\partial^2 f}{\partial t^2} + 4 \frac{\partial^2 f}{\partial x^2} \frac{\partial f}{\partial x} f^2 \notag \\
&~~~+ \left( \frac{\partial f}{\partial x} \right)^2 \frac{\partial f}{\partial t} + \left( \frac{\partial f}{\partial x} \right)^3 f
\end{align} d t 4 d 4 x = ∂ t ∂ ( d t 3 d 3 x ) + ∂ x ∂ ( d t 3 d 3 x ) f = ∂ t 3 ∂ 3 f + 2 ∂ t 2 ∂ x ∂ 3 f f + 2 ∂ t ∂ x ∂ 2 f ∂ t ∂ f + ∂ t ∂ x ∂ 2 f ∂ t ∂ f + ∂ x ∂ f ∂ t 2 ∂ 2 f + ∂ t ∂ x 2 ∂ 3 f f 2 + 2 ∂ x 2 ∂ 2 f ∂ t ∂ f f + 2 ∂ t ∂ x ∂ 2 f ∂ x ∂ f f + ( ∂ x ∂ f ) 2 ∂ t ∂ f + ∂ x ∂ t 2 ∂ 3 f f + 2 ∂ t ∂ x 2 ∂ 3 f f 2 + 2 ∂ t ∂ x ∂ 2 f ∂ x ∂ f f + ∂ x 2 ∂ 2 f ∂ t ∂ f f + ∂ x ∂ f ∂ x ∂ t ∂ 2 f f + ∂ x 3 ∂ 3 f f 3 + 2 ∂ x 2 ∂ 2 f ∂ x ∂ f f 2 + 2 ∂ x 2 ∂ 2 f ∂ x ∂ f f 2 + ( ∂ x ∂ f ) 3 f = ∂ t 3 ∂ 3 f + 3 ∂ t 2 ∂ x ∂ 3 f f + 3 ∂ t ∂ x 2 ∂ 3 f f 2 + ∂ x 3 ∂ 3 f f 3 + 3 ∂ t ∂ x ∂ 2 f ∂ t ∂ f + 5 ∂ t ∂ x ∂ 2 f ∂ x ∂ f f + 3 ∂ x 2 ∂ 2 f ∂ t ∂ f f + ∂ x ∂ f ∂ t 2 ∂ 2 f + 4 ∂ x 2 ∂ 2 f ∂ x ∂ f f 2 + ( ∂ x ∂ f ) 2 ∂ t ∂ f + ( ∂ x ∂ f ) 3 f
Second, we should derive the derivatives of k 1 k_1 k 1 , k 2 k_2 k 2 , k 3 k_3 k 3 , k 4 k_4 k 4 with respect to h h h .
As a preparation, we derive the derivative of f ( X ( h ) , T ( h ) ) f(X(h), T(h)) f ( X ( h ) , T ( h )) with respect to h h h .
d f d h = ( d X d h ∂ ∂ X + d T d h ∂ ∂ T + ∂ ∂ h ) f = ∂ f ∂ X d X d h + ∂ f ∂ T d T d h \begin{equation}
% \label{eq:f'}
\frac{df}{dh} = \left( \frac{dX}{dh} \frac{\partial}{\partial X} + \frac{dT}{dh} \frac{\partial}{\partial T} + \frac{\partial}{\partial h} \right) f
= \frac{\partial f}{\partial X} \frac{dX}{dh} + \frac{\partial f}{\partial T} \frac{dT}{dh}
\end{equation} d h df = ( d h d X ∂ X ∂ + d h d T ∂ T ∂ + ∂ h ∂ ) f = ∂ X ∂ f d h d X + ∂ T ∂ f d h d T
d 2 f d h 2 = ( d X d h ∂ ∂ X + d T d h ∂ ∂ T + ∂ ∂ h ) 2 f = [ ( d X d h ) 2 ∂ 2 ∂ X 2 + 2 d X d h d T d h ∂ 2 ∂ X ∂ T + ( d T d h ) 2 ∂ 2 ∂ T 2 + ∂ ∂ h ( d X d h ∂ ∂ X ) + ∂ ∂ h ( d T d h ∂ ∂ T ) ] f = [ ( d X d h ) 2 ∂ 2 ∂ X 2 + 2 d X d h d T d h ∂ 2 ∂ X ∂ T + ( d T d h ) 2 ∂ 2 ∂ T 2 + d 2 X d h 2 ∂ ∂ X + d 2 T d h 2 ∂ ∂ T ] f \begin{align}
% \label{eq:f''}
\frac{d^2f}{dh^2} &= \left( \frac{dX}{dh} \frac{\partial}{\partial X} + \frac{dT}{dh} \frac{\partial}{\partial T} + \frac{\partial}{\partial h} \right)^2 f \notag \\
&= \left[ \left( \frac{dX}{dh} \right)^2 \frac{\partial^2}{\partial X^2} + 2 \frac{dX}{dh} \frac{dT}{dh} \frac{\partial^2}{\partial X \partial T} + \left( \frac{dT}{dh} \right)^2 \frac{\partial^2}{\partial T^2}
+ \frac{\partial}{\partial h} \left( \frac{dX}{dh} \frac{\partial}{\partial X} \right) +\frac{\partial}{\partial h} \left( \frac{dT}{dh} \frac{\partial}{\partial T} \right) \right] f \notag \\
&= \left[ \left( \frac{dX}{dh} \right)^2 \frac{\partial^2}{\partial X^2} + 2 \frac{dX}{dh} \frac{dT}{dh} \frac{\partial^2}{\partial X \partial T} + \left( \frac{dT}{dh} \right)^2 \frac{\partial^2}{\partial T^2} + \frac{d^2X}{dh^2} \frac{\partial}{\partial X} + \frac{d^2T}{dh^2} \frac{\partial}{\partial T} \right] f
\end{align} d h 2 d 2 f = ( d h d X ∂ X ∂ + d h d T ∂ T ∂ + ∂ h ∂ ) 2 f = [ ( d h d X ) 2 ∂ X 2 ∂ 2 + 2 d h d X d h d T ∂ X ∂ T ∂ 2 + ( d h d T ) 2 ∂ T 2 ∂ 2 + ∂ h ∂ ( d h d X ∂ X ∂ ) + ∂ h ∂ ( d h d T ∂ T ∂ ) ] f = [ ( d h d X ) 2 ∂ X 2 ∂ 2 + 2 d h d X d h d T ∂ X ∂ T ∂ 2 + ( d h d T ) 2 ∂ T 2 ∂ 2 + d h 2 d 2 X ∂ X ∂ + d h 2 d 2 T ∂ T ∂ ] f
d 3 f d h 3 = ( d X d h ∂ ∂ X + d T d h ∂ ∂ T + ∂ ∂ h ) 3 f = [ ( d X d h ) 3 ∂ 3 ∂ X 3 + 3 ( d X d h ) 2 d T d h ∂ 3 ∂ X 2 ∂ T + 3 d X d h ( d T d h ) 2 ∂ 3 ∂ X ∂ T 2 + ( d T d h ) 3 ∂ 3 ∂ T 3 + 3 d X d h d 2 X d h 2 ∂ 2 ∂ X 2 + 3 ( d X d h d 2 T d h 2 + d T d h d 2 X d h 2 ) ∂ 2 ∂ X ∂ T + 3 d T d h d 2 T d h 2 ∂ 2 ∂ T 2 + d 3 X d h 3 ∂ ∂ X + d 3 T d h 3 ∂ ∂ T ] f \begin{align}
% \label{eq:f'''}
\frac{d^3f}{dh^3} &= \left( \frac{dX}{dh} \frac{\partial}{\partial X} + \frac{dT}{dh} \frac{\partial}{\partial T} + \frac{\partial}{\partial h} \right)^3 f \notag \\
&= \left[ \left( \frac{dX}{dh} \right)^3 \frac{\partial^3}{\partial X^3} + 3 \left( \frac{dX}{dh} \right)^2 \frac{dT}{dh} \frac{\partial^3}{\partial X^2 \partial T}+ 3 \frac{dX}{dh} \left( \frac{dT}{dh} \right)^2 \frac{\partial^3}{\partial X \partial T^2} + \left( \frac{dT}{dh} \right)^3 \frac{\partial^3}{\partial T^3} \right. \notag \\
&\hspace{12pt}+ 3 \frac{dX}{dh} \frac{d^2X}{dh^2} \frac{\partial^2}{\partial X^2} + 3\left( \frac{dX}{dh} \frac{d^2T}{dh^2} + \frac{dT}{dh} \frac{d^2X}{dh^2} \right) \frac{\partial^2}{\partial X \partial T} + 3 \frac{dT}{dh} \frac{d^2T}{dh^2} \frac{\partial^2}{\partial T^2} \notag \\
&\hspace{12pt} \left.+ \frac{d^3X}{dh^3} \frac{\partial}{\partial X} + \frac{d^3T}{dh^3} \frac{\partial}{\partial T} \right] f
\end{align} d h 3 d 3 f = ( d h d X ∂ X ∂ + d h d T ∂ T ∂ + ∂ h ∂ ) 3 f = [ ( d h d X ) 3 ∂ X 3 ∂ 3 + 3 ( d h d X ) 2 d h d T ∂ X 2 ∂ T ∂ 3 + 3 d h d X ( d h d T ) 2 ∂ X ∂ T 2 ∂ 3 + ( d h d T ) 3 ∂ T 3 ∂ 3 + 3 d h d X d h 2 d 2 X ∂ X 2 ∂ 2 + 3 ( d h d X d h 2 d 2 T + d h d T d h 2 d 2 X ) ∂ X ∂ T ∂ 2 + 3 d h d T d h 2 d 2 T ∂ T 2 ∂ 2 + d h 3 d 3 X ∂ X ∂ + d h 3 d 3 T ∂ T ∂ ] f
k 1 k_1 k 1 is not dependent on h h h , so the following relationship holds.
d k 1 d h = 0 \begin{equation}
\frac{dk_1}{dh} = 0
\end{equation} d h d k 1 = 0
For k 2 k_2 k 2 calculation, we have X = x + h 2 k 1 X=x+\frac{h}{2} k_1 X = x + 2 h k 1 , and T = t + h 2 T=t+\frac{h}{2} T = t + 2 h , so the derivatives with respect to h h h can be expressed as follows.
d X d h = k 1 2 + h 2 d k 1 d h = f 2 , d T d h = 1 2 \begin{equation}
\frac{dX}{dh} = \frac{k_1}{2} + \frac{h}{2}\frac{dk_1}{dh} = \frac{f}{2}, \quad
\frac{dT}{dh} = \frac{1}{2}
\end{equation} d h d X = 2 k 1 + 2 h d h d k 1 = 2 f , d h d T = 2 1
Substituting these relations to d f d h \frac{df}{dh} d h df , d 2 f d h 2 \frac{d^2f}{dh^2} d h 2 d 2 f , d 3 f d h 3 \frac{d^3f}{dh^3} d h 3 d 3 f , the derivatives of k 2 k_2 k 2 can be obtained.
d k 2 d h = f 2 ∂ f ∂ x + 1 2 ∂ f ∂ t \begin{equation}
\frac{dk_2}{dh} = \frac{f}{2} \frac{\partial f}{\partial x} + \frac{1}{2} \frac{\partial f}{\partial t}
\end{equation} d h d k 2 = 2 f ∂ x ∂ f + 2 1 ∂ t ∂ f
d 2 k 2 d h 2 = f 2 4 ∂ 2 f ∂ x 2 + f 2 ∂ 2 f ∂ x ∂ t + 1 4 ∂ 2 f ∂ t 2 \begin{equation}
\frac{d^2 k_2}{dh^2} = \frac{f^2}{4} \frac{\partial^2 f}{\partial x^2} + \frac{f}{2} \frac{\partial^2 f}{\partial x \partial t} + \frac{1}{4} \frac{\partial^2 f}{\partial t^2}
\end{equation} d h 2 d 2 k 2 = 4 f 2 ∂ x 2 ∂ 2 f + 2 f ∂ x ∂ t ∂ 2 f + 4 1 ∂ t 2 ∂ 2 f
d 3 k 2 d h 3 = f 3 8 ∂ 3 f ∂ x 3 + 3 f 2 8 ∂ 3 f ∂ x 2 ∂ t + 3 f 8 ∂ 3 f ∂ x ∂ t 2 + 1 8 ∂ 3 f ∂ t 3 \begin{equation}
\frac{d^3 k_2}{dh^3} = \frac{f^3}{8} \frac{\partial^3 f}{\partial x^3} + \frac{3f^2}{8} \frac{\partial^3 f}{\partial x^2 \partial t} + \frac{3f}{8} \frac{\partial^3 f}{\partial x \partial t^2} + \frac{1}{8} \frac{\partial^3 f}{\partial t^3}
\end{equation} d h 3 d 3 k 2 = 8 f 3 ∂ x 3 ∂ 3 f + 8 3 f 2 ∂ x 2 ∂ t ∂ 3 f + 8 3 f ∂ x ∂ t 2 ∂ 3 f + 8 1 ∂ t 3 ∂ 3 f
For k 3 k_3 k 3 calculation, we have X = x + h 2 k 2 X=x+\frac{h}{2} k_2 X = x + 2 h k 2 , T = t + h 2 T=t+\frac{h}{2} T = t + 2 h , so the derivatives with respect to h h h can be expressed as follows.
d X d h = k 2 2 + h 2 d k 2 d h , d T d h = 1 2 \begin{equation}
\frac{dX}{dh} = \frac{k_2}{2} + \frac{h}{2}\frac{dk_2}{dh}, \quad
\frac{dT}{dh} = \frac{1}{2}
\end{equation} d h d X = 2 k 2 + 2 h d h d k 2 , d h d T = 2 1
d 2 X d h 2 = d k 2 d h + h 2 d 2 k 2 d h 2 , d 2 T d h 2 = 0 \begin{equation}
\frac{d^2X}{dh^2} = \frac{dk_2}{dh} + \frac{h}{2}\frac{d^2k_2}{dh^2}, \quad
\frac{d^2T}{dh^2} = 0
\end{equation} d h 2 d 2 X = d h d k 2 + 2 h d h 2 d 2 k 2 , d h 2 d 2 T = 0
d 3 X d h 3 = 3 2 d 2 k 2 d h 2 + h 2 d 3 k 2 d h 3 \begin{equation}
\frac{d^3X}{dh^3} = \frac{3}{2} \frac{d^2k_2}{dh^2} + \frac{h}{2}\frac{d^3k_2}{dh^3}
\end{equation} d h 3 d 3 X = 2 3 d h 2 d 2 k 2 + 2 h d h 3 d 3 k 2
As we are only interested in the derivatives at h = 0 h=0 h = 0 , we derive the derivatives of k 3 k_3 k 3 at h = 0 h=0 h = 0 .
d k 3 d h ∣ h = 0 = k 2 2 ∂ f ∂ x + 1 2 ∂ f ∂ t \begin{equation}
\left. \frac{dk_3}{dh} \right|_{h=0} = \frac{k_2}{2} \frac{\partial f}{\partial x} + \frac{1}{2} \frac{\partial f}{\partial t}
\end{equation} d h d k 3 h = 0 = 2 k 2 ∂ x ∂ f + 2 1 ∂ t ∂ f
d 2 k 3 d h 2 ∣ h = 0 = k 2 2 4 ∂ 2 f ∂ x 2 + k 2 2 ∂ 2 f ∂ x ∂ t + 1 4 ∂ 2 f ∂ t 2 + d k 2 d h ∂ f ∂ x \begin{align}
\left. \frac{d^2k_3}{dh^2} \right|_{h=0} = \frac{k_2^2}{4} \frac{\partial^2 f}{\partial x^2} + \frac{k_2}{2} \frac{\partial^2 f}{\partial x \partial t}+ \frac{1}{4} \frac{\partial^2 f}{\partial t^2} + \frac{dk_2}{dh} \frac{\partial f}{\partial x}
\end{align} d h 2 d 2 k 3 h = 0 = 4 k 2 2 ∂ x 2 ∂ 2 f + 2 k 2 ∂ x ∂ t ∂ 2 f + 4 1 ∂ t 2 ∂ 2 f + d h d k 2 ∂ x ∂ f
d 3 k 3 d h 3 ∣ h = 0 = k 2 3 8 ∂ 3 f ∂ x 3 + 3 k 2 2 8 ∂ 3 f ∂ x 2 ∂ t + 3 k 2 8 ∂ 3 f ∂ x ∂ t 2 + 1 8 ∂ 3 f ∂ t 3 + 3 k 2 2 d k 2 d h ∂ 2 f ∂ x 2 + 3 2 d k 2 d h ∂ 2 f ∂ x ∂ t + 3 2 d 2 k 2 d h 2 ∂ f ∂ x \begin{align}
\left. \frac{d^3k_3}{dh^3} \right|_{h=0}
=&\frac{k_2^3}{8} \frac{\partial^3 f}{\partial x^3} + \frac{3k_2^2}{8} \frac{\partial^3 f}{\partial x^2 \partial t} + \frac{3 k_2}{8} \frac{\partial^3 f}{\partial x \partial t^2} \notag \\
&+ \frac{1}{8} \frac{\partial^3 f}{\partial t^3} + \frac{3 k_2}{2} \frac{dk_2}{dh} \frac{\partial^2 f}{\partial x^2} + \frac{3}{2} \frac{dk_2}{dh} \frac{\partial^2 f}{\partial x \partial t} + \frac{3}{2} \frac{d^2 k_2}{dh^2} \frac{\partial f}{\partial x}
\end{align} d h 3 d 3 k 3 h = 0 = 8 k 2 3 ∂ x 3 ∂ 3 f + 8 3 k 2 2 ∂ x 2 ∂ t ∂ 3 f + 8 3 k 2 ∂ x ∂ t 2 ∂ 3 f + 8 1 ∂ t 3 ∂ 3 f + 2 3 k 2 d h d k 2 ∂ x 2 ∂ 2 f + 2 3 d h d k 2 ∂ x ∂ t ∂ 2 f + 2 3 d h 2 d 2 k 2 ∂ x ∂ f
In the same way, we can derive the derivatives for k 4 k_4 k 4 .
d X d h = k 3 + h d k 3 d h , d T d h = 1 \begin{equation}
\frac{dX}{dh} = k_3 + h \frac{dk_3}{dh}, \quad
\frac{dT}{dh} = 1
\end{equation} d h d X = k 3 + h d h d k 3 , d h d T = 1
d 2 X d h 2 = 2 d k 3 d h + h d 2 k 3 d h 2 , d 2 T d h 2 = 0 \begin{equation}
\frac{d^2X}{dh^2} = 2 \frac{dk_3}{dh} +h \frac{d^2k_3}{dh^2}, ~~~
\frac{d^2T}{dh^2} = 0
\end{equation} d h 2 d 2 X = 2 d h d k 3 + h d h 2 d 2 k 3 , d h 2 d 2 T = 0
d 3 X d h 3 = 3 d 2 k 3 d h 2 + h d 3 k 3 d h 3 \begin{equation}
\frac{d^3X}{dh^3} = 3 \frac{d^2k_3}{dh^2} +h \frac{d^3k_3}{dh^3}
\end{equation} d h 3 d 3 X = 3 d h 2 d 2 k 3 + h d h 3 d 3 k 3
Derivatives of k 4 k_4 k 4 at h = 0 h=0 h = 0 are obtained as follows.
d k 4 d h ∣ h = 0 = k 3 ∂ f ∂ x + ∂ f ∂ t \begin{equation}
\left. \frac{dk_4}{dh} \right|_{h=0} = k_3 \frac{\partial f}{\partial x} + \frac{\partial f}{\partial t}
\end{equation} d h d k 4 h = 0 = k 3 ∂ x ∂ f + ∂ t ∂ f
d 2 k 4 d h 2 ∣ h = 0 = k 3 2 ∂ 2 f ∂ x 2 + 2 k 3 ∂ 2 f ∂ x ∂ t + ∂ 2 f ∂ t 2 + 2 d k 3 d h ∂ f ∂ x \begin{align}
\left.\frac{d^2k_4}{dh^2} \right|_{h=0} = k_3^2 \frac{\partial^2 f}{\partial x^2} + 2 k_3 \frac{\partial^2 f}{\partial x \partial t}
+ \frac{\partial^2 f}{\partial t^2} + 2\frac{dk_3}{dh} \frac{\partial f}{\partial x}
\end{align} d h 2 d 2 k 4 h = 0 = k 3 2 ∂ x 2 ∂ 2 f + 2 k 3 ∂ x ∂ t ∂ 2 f + ∂ t 2 ∂ 2 f + 2 d h d k 3 ∂ x ∂ f
d 3 k 4 d h 3 ∣ h = 0 = k 3 3 ∂ 3 f ∂ x 3 + 3 k 3 2 ∂ 3 f ∂ x 2 ∂ t + 3 k 3 ∂ 3 f ∂ x ∂ t 2 + ∂ 3 f ∂ t 3 + 6 k 3 d k 3 d h ∂ 2 f ∂ x 2 + 6 d k 3 d h ∂ 2 f ∂ x ∂ t + 3 d 2 k 3 d h 2 ∂ f ∂ x \begin{align}
\left.\frac{d^3k_4}{dh^3} \right|_{h=0} =& k_3^3 \frac{\partial^3 f}{\partial x^3} + 3k_3^2 \frac{\partial^3 f}{\partial x^2 \partial t} + 3k_3 \frac{\partial^3 f}{\partial x \partial t^2} + \frac{\partial^3 f}{\partial t^3} \notag \\
&+ 6 k_3 \frac{dk_3}{dh} \frac{\partial^2 f}{\partial x^2} + 6 \frac{dk_3}{dh} \frac{\partial^2 f}{\partial x \partial t} + 3 \frac{d^2 k_3}{dh^2} \frac{\partial f}{\partial x}
\end{align} d h 3 d 3 k 4 h = 0 = k 3 3 ∂ x 3 ∂ 3 f + 3 k 3 2 ∂ x 2 ∂ t ∂ 3 f + 3 k 3 ∂ x ∂ t 2 ∂ 3 f + ∂ t 3 ∂ 3 f + 6 k 3 d h d k 3 ∂ x 2 ∂ 2 f + 6 d h d k 3 ∂ x ∂ t ∂ 2 f + 3 d h 2 d 2 k 3 ∂ x ∂ f
As we have obtained all the necessary derivatives, we can now compare the coefficients.
First order:
1 6 ( k 1 + 2 k 2 + 2 k 3 + k 4 ) ∣ h = 0 = f \begin{equation}
\left. \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4) \right|_{h=0} = f
\end{equation} 6 1 ( k 1 + 2 k 2 + 2 k 3 + k 4 ) h = 0 = f
Second order:
1 3 [ d k 1 d h + 2 d k 2 d h + 2 d k 3 d h + d k 4 d h ] h = 0 = 1 3 [ 2 ( f 2 ∂ f ∂ x + 1 2 ∂ f ∂ t ) + 2 ( f 2 ∂ f ∂ x + 1 2 ∂ f ∂ t ) + f ∂ f ∂ x + ∂ f ∂ t ] = f ∂ f ∂ x + ∂ f ∂ t \begin{align}
&\frac{1}{3} \left[ \frac{dk_1}{dh} + 2\frac{dk_2}{dh} + 2\frac{dk_3}{dh} + \frac{dk_4}{dh} \right]_{h=0} \notag \\
&= \frac{1}{3} \left[ 2\left( \frac{f}{2} \frac{\partial f}{\partial x} + \frac{1}{2} \frac{\partial f}{\partial t} \right) + 2\left( \frac{f}{2} \frac{\partial f}{\partial x} + \frac{1}{2} \frac{\partial f}{\partial t} \right) + f \frac{\partial f}{\partial x} + \frac{\partial f}{\partial t} \right] \notag \\
&= f \frac{\partial f}{\partial x} +\frac{\partial f}{\partial t}
\end{align} 3 1 [ d h d k 1 + 2 d h d k 2 + 2 d h d k 3 + d h d k 4 ] h = 0 = 3 1 [ 2 ( 2 f ∂ x ∂ f + 2 1 ∂ t ∂ f ) + 2 ( 2 f ∂ x ∂ f + 2 1 ∂ t ∂ f ) + f ∂ x ∂ f + ∂ t ∂ f ] = f ∂ x ∂ f + ∂ t ∂ f
Third order:
1 2 [ d 2 k 1 d h 2 + 2 d 2 k 2 d h 2 + 2 d 2 k 3 d h 2 + d 2 k 4 d h 2 ] h = 0 = 1 2 [ 2 ( f 2 4 ∂ 2 f ∂ x 2 + f 2 ∂ 2 f ∂ x ∂ t + 1 4 ∂ 2 f ∂ t 2 ) + 2 ( f 2 4 ∂ 2 f ∂ x 2 + f 2 ∂ 2 f ∂ x ∂ t + 1 4 ∂ 2 f ∂ t 2 + ( f 2 ∂ f ∂ x + 1 2 ∂ f ∂ t ) ∂ f ∂ x ) + ( f 2 ∂ 2 f ∂ x 2 + 2 f ∂ 2 f ∂ x ∂ t + ∂ 2 f ∂ t 2 + 2 ( f 2 ∂ f ∂ x + 1 2 ∂ f ∂ t ) ∂ f ∂ x ) ] = ∂ 2 f ∂ x 2 + 2 f ∂ 2 f ∂ x ∂ t + ∂ 2 f ∂ t 2 + f ( ∂ f ∂ x ) 2 + ∂ f ∂ t ∂ f ∂ x \begin{align}
&\frac{1}{2} \left[ \frac{d^2k_1}{dh^2} + 2\frac{d^2k_2}{dh^2} + 2\frac{d^2k_3}{dh^2} + \frac{d^2k_4}{dh^2}\right] _{h=0} \notag \\
&= \frac{1}{2} \left[ 2\left( \frac{f^2}{4} \frac{\partial^2 f}{\partial x^2} + \frac{f}{2} \frac{\partial^2 f}{\partial x \partial t} + \frac{1}{4} \frac{\partial^2 f}{\partial t^2} \right) \right. \notag \\
&\hspace{20pt}\left. + 2 \left( \frac{f^2}{4} \frac{\partial^2 f}{\partial x^2} + \frac{f}{2} \frac{\partial^2 f}{\partial x \partial t} + \frac{1}{4} \frac{\partial^2 f}{\partial t^2} + \left( \frac{f}{2} \frac{\partial f}{\partial x} + \frac{1}{2} \frac{\partial f}{\partial t} \right) \frac{\partial f}{\partial x} \right) \right. \notag\\
&\hspace{20pt}\left. + \left( f^2 \frac{\partial^2 f}{\partial x^2} + 2f \frac{\partial^2 f}{\partial x \partial t} + \frac{\partial^2 f}{\partial t^2} + 2 \left( \frac{f}{2} \frac{\partial f}{\partial x} + \frac{1}{2} \frac{\partial f}{\partial t} \right) \frac{\partial f}{\partial x} \right) \right] \notag \\
&= \frac{\partial^2 f}{\partial x^2} + 2f \frac{\partial^2 f}{\partial x \partial t} + \frac{\partial^2 f}{\partial t^2} + f \left( \frac{\partial f}{\partial x} \right)^2 + \frac{\partial f}{\partial t} \frac{\partial f}{\partial x}
\end{align} 2 1 [ d h 2 d 2 k 1 + 2 d h 2 d 2 k 2 + 2 d h 2 d 2 k 3 + d h 2 d 2 k 4 ] h = 0 = 2 1 [ 2 ( 4 f 2 ∂ x 2 ∂ 2 f + 2 f ∂ x ∂ t ∂ 2 f + 4 1 ∂ t 2 ∂ 2 f ) + 2 ( 4 f 2 ∂ x 2 ∂ 2 f + 2 f ∂ x ∂ t ∂ 2 f + 4 1 ∂ t 2 ∂ 2 f + ( 2 f ∂ x ∂ f + 2 1 ∂ t ∂ f ) ∂ x ∂ f ) + ( f 2 ∂ x 2 ∂ 2 f + 2 f ∂ x ∂ t ∂ 2 f + ∂ t 2 ∂ 2 f + 2 ( 2 f ∂ x ∂ f + 2 1 ∂ t ∂ f ) ∂ x ∂ f ) ] = ∂ x 2 ∂ 2 f + 2 f ∂ x ∂ t ∂ 2 f + ∂ t 2 ∂ 2 f + f ( ∂ x ∂ f ) 2 + ∂ t ∂ f ∂ x ∂ f
Fourth order:
2 3 [ d 3 k 1 d h 3 + 2 d 3 k 2 d h 3 + 2 d 3 k 3 d h 3 + d 3 k 4 d h 3 ] h = 0 = 2 3 [ 2 ( f 3 8 ∂ 3 f ∂ x 3 + 3 f 2 8 ∂ 3 f ∂ x 2 ∂ t + 3 f 8 ∂ 3 f ∂ x ∂ t 2 + 1 8 ∂ 3 f ∂ t 3 ) + 2 ( k 2 3 8 ∂ 3 f ∂ x 3 + 3 k 2 2 8 ∂ 3 f ∂ x 2 ∂ t + 3 k 2 8 ∂ 3 f ∂ x ∂ t 2 + 1 8 ∂ 3 f ∂ t 3 + 3 k 2 2 d k 2 d h ∂ 2 f ∂ x 2 + 3 2 d k 2 d h ∂ 2 f ∂ x ∂ t + 3 2 d 2 k 2 d h 2 ∂ f ∂ x ) + ( k 3 3 ∂ 3 f ∂ x 3 + 3 k 3 2 ∂ 3 f ∂ x 2 ∂ t + 3 k 3 ∂ 3 f ∂ x ∂ t 2 + ∂ 3 f ∂ t 3 + 6 k 3 d k 3 d h ∂ 2 f ∂ x 2 + 6 d k 3 d h ∂ 2 f ∂ x ∂ t + 3 d 2 k 3 d h 2 ∂ f ∂ x ) ] = ∂ 3 f ∂ t 3 + 3 ∂ 3 f ∂ t 2 ∂ x f + 3 ∂ 3 f ∂ t ∂ x 2 f 2 + ∂ 3 f ∂ x 3 f 3 + 3 ∂ 2 f ∂ t ∂ x ∂ f ∂ t + 5 ∂ 2 f ∂ t ∂ x ∂ f ∂ x f + 3 ∂ 2 f ∂ x 2 ∂ f ∂ t f + ∂ f ∂ x ∂ 2 f ∂ t 2 + 4 ∂ 2 f ∂ x 2 ∂ f ∂ x f 2 + ( ∂ f ∂ x ) 2 ∂ f ∂ t + ( ∂ f ∂ x ) 3 f \begin{align}
&\frac{2}{3} \left[ \frac{d^3k_1}{dh^3} + 2\frac{d^3k_2}{dh^3} + 2\frac{d^3k_3}{dh^3} + \frac{d^3k_4}{dh^3}\right]_{h=0} \notag \\
&= \frac{2}{3} \left[ 2\left( \frac{f^3}{8} \frac{\partial^3 f}{\partial x^3} + \frac{3f^2}{8} \frac{\partial^3 f}{\partial x^2 \partial t} + \frac{3f}{8} \frac{\partial^3 f}{\partial x \partial t^2} + \frac{1}{8} \frac{\partial^3 f}{\partial t^3} \right) \right. \notag \\
&\hspace{11pt}+ 2 \left( \frac{k_2^3}{8} \frac{\partial^3 f}{\partial x^3} + \frac{3k_2^2}{8} \frac{\partial^3 f}{\partial x^2 \partial t} + \frac{3 k_2}{8} \frac{\partial^3 f}{\partial x \partial t^2} + \frac{1}{8} \frac{\partial^3 f}{\partial t^3}
+ \frac{3 k_2}{2} \frac{dk_2}{dh} \frac{\partial^2 f}{\partial x^2} + \frac{3}{2} \frac{dk_2}{dh} \frac{\partial^2 f}{\partial x \partial t} + \frac{3}{2} \frac{d^2 k_2}{dh^2} \frac{\partial f}{\partial x} \right) \notag \\
&\hspace{11pt}+ \left( k_3^3 \frac{\partial^3 f}{\partial x^3} + 3k_3^2 \frac{\partial^3 f}{\partial x^2 \partial t} + 3k_3 \frac{\partial^3 f}{\partial x \partial t^2} + \frac{\partial^3 f}{\partial t^3}
\left.+ 6 k_3 \frac{dk_3}{dh} \frac{\partial^2 f}{\partial x^2} + 6 \frac{dk_3}{dh} \frac{\partial^2 f}{\partial x \partial t} + 3 \frac{d^2 k_3}{dh^2} \frac{\partial f}{\partial x} \right) \right] \notag \\
&= \frac{\partial^3 f}{\partial t^3} + 3 \frac{\partial^3 f}{\partial t^2 \partial x} f + 3 \frac{\partial^3 f}{\partial t \partial x^2} f^2 + \frac{\partial^3 f}{\partial x^3} f^3 \notag \\
&\hspace{11pt}+ 3\frac{\partial^2 f}{\partial t \partial x} \frac{\partial f}{\partial t} + 5 \frac{\partial^2 f}{\partial t \partial x} \frac{\partial f}{\partial x}f + 3 \frac{\partial^2 f}{\partial x^2} \frac{\partial f}{\partial t} f + \frac{\partial f}{\partial x} \frac{\partial^2 f}{\partial t^2} + 4 \frac{\partial^2 f}{\partial x^2} \frac{\partial f}{\partial x} f^2 \notag \\
&\hspace{11pt}+ \left( \frac{\partial f}{\partial x} \right)^2 \frac{\partial f}{\partial t} + \left( \frac{\partial f}{\partial x} \right)^3 f
\end{align} 3 2 [ d h 3 d 3 k 1 + 2 d h 3 d 3 k 2 + 2 d h 3 d 3 k 3 + d h 3 d 3 k 4 ] h = 0 = 3 2 [ 2 ( 8 f 3 ∂ x 3 ∂ 3 f + 8 3 f 2 ∂ x 2 ∂ t ∂ 3 f + 8 3 f ∂ x ∂ t 2 ∂ 3 f + 8 1 ∂ t 3 ∂ 3 f ) + 2 ( 8 k 2 3 ∂ x 3 ∂ 3 f + 8 3 k 2 2 ∂ x 2 ∂ t ∂ 3 f + 8 3 k 2 ∂ x ∂ t 2 ∂ 3 f + 8 1 ∂ t 3 ∂ 3 f + 2 3 k 2 d h d k 2 ∂ x 2 ∂ 2 f + 2 3 d h d k 2 ∂ x ∂ t ∂ 2 f + 2 3 d h 2 d 2 k 2 ∂ x ∂ f ) + ( k 3 3 ∂ x 3 ∂ 3 f + 3 k 3 2 ∂ x 2 ∂ t ∂ 3 f + 3 k 3 ∂ x ∂ t 2 ∂ 3 f + ∂ t 3 ∂ 3 f + 6 k 3 d h d k 3 ∂ x 2 ∂ 2 f + 6 d h d k 3 ∂ x ∂ t ∂ 2 f + 3 d h 2 d 2 k 3 ∂ x ∂ f ) ] = ∂ t 3 ∂ 3 f + 3 ∂ t 2 ∂ x ∂ 3 f f + 3 ∂ t ∂ x 2 ∂ 3 f f 2 + ∂ x 3 ∂ 3 f f 3 + 3 ∂ t ∂ x ∂ 2 f ∂ t ∂ f + 5 ∂ t ∂ x ∂ 2 f ∂ x ∂ f f + 3 ∂ x 2 ∂ 2 f ∂ t ∂ f f + ∂ x ∂ f ∂ t 2 ∂ 2 f + 4 ∂ x 2 ∂ 2 f ∂ x ∂ f f 2 + ( ∂ x ∂ f ) 2 ∂ t ∂ f + ( ∂ x ∂ f ) 3 f
Notation Table
Symbol Definition f ( x , t ) f(x,t) f ( x , t ) Function of ODE h h h Step size k i k_i k i Runge-Kutta intermediate values ∂ n f ∂ x n \frac{\partial^n f}{\partial x^n} ∂ x n ∂ n f n-th partial derivative with respect to x x x